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How can we remove some interactions �generate shorter clauses� in a constraint satisfaction problem �CSP�
such that it still remains satisfiable? In this paper we study a modified survey propagation algorithm that
enables us to address this question for a prototypical CSP, i.e., random K-satisfiability problem. The average
number of removed interactions is controlled by a tuning parameter in the algorithm. If the original problem is
satisfiable then we are able to construct satisfiable subproblems ranging from the original one to a minimal one
with minimum possible number of interactions. The minimal satisfiable subproblems will directly provide the
solutions of the original problem.
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I. INTRODUCTION

There are many combinatorial problems that can be rep-
resented as a constrained satisfaction problem �CSP� in
which we are to satisfy a number of constrains defined over
a set of discrete variables. An interesting example is the low-
density parity-check code in information theory �1�. Here a
code word consists of N variables ��0,1� that satisfy M
parity-check constraints. Each constraint acts on a few vari-
ables and is satisfied if sum of the variables module 2 is zero.
Another example is finding the fixed points of a random
Boolean network �2�. Again we have N Boolean variables
represented by the nodes of a directed network. The state of
a node at a given time step is a logical function of the state of
its incoming neighbors in the previous time step. Thus a
fixed point of the problem is one that satisfies N constraints,
one for each variable, where a constraint enforces the vari-
able taking the outcome of the logical function.

From a physical point of view there exists a close relation
between these problems with frustrated systems exhibiting
glassy behavior, such as spin glasses �3�. The methods and
concepts developed in the study of these systems enable us
to obtain a better understanding of the above problems.

Random satisfiability problem is a typical CSP that allows
us to study combinatorial CSP’s in a simple framework. It is
the first problem whose NP-completeness has been proven
�4,5�. The problem is defined over N logical variables that
are to satisfy M logical constraints or clauses. Each clause
contains some randomly selected variables that can appear
negated or as such with equal probability. The clause is sat-
isfied if at least one of its components be TRUE. Here the
interest is in the satisfiability of the problem and finding the
solutions or ground-state configurations that result to the
minimum number of violated clauses. For small number of
clauses per variable �=M /N, a typical instance of the prob-
lem is satisfiable �SAT�, that is there is at least one configu-

ration of the variables that satisfies all the clauses. On the
other hand, for large � a typical instance of the problem is
unsatisfiable �UNSAT� with probability one. We have a sharp
transition at �c that separates SAT and UNSAT phases of the
problem �6�.

The interaction pattern of clauses with variables makes a
graph that is called the factor graph �7�. Notice that a larger
number of interactions leads to more frustration and thus
makes the problem harder both in checking its satisfiability
and finding its solutions. Therefore, one way to make the
problem easier is to reduce it to some smaller subproblems
with smaller number of interactions. Then we would be able
to utilize some local search algorithms �like Walksat and its
generalizations �8�� to solve the smaller subproblem. How-
ever, for a given number of variables and clauses the chance
to find a solution decreases as we remove the interactions
from the factor graph. Moreover, the number of subproblems
with a given number of interactions is exponentially large.
These facts make the above reduction procedure inefficient
unless we find a way around them.

Survey propagation algorithm is a powerful massage
passing algorithm that helps us to check the satisfiability of
the problem and find its solutions �9,10�. In Ref. �11� we
showed that as long as we are in the SAT phase we can
modify this algorithm to find the satisfiable spanning trees.
Indeed the modified algorithm introduced in �11� enables us
to remove some interactions from the problem such that the
obtained subproblem is still satisfiable. There, we also
showed that there is a correspondence between the set of
solutions in the original problem and those of the satisfiable
spanning trees.

In this paper we are going to investigate the modified
algorithm in more details, by studying its performance for
different classes of subproblems. There is a free parameter in
the algorithm that allows us to control the number of inter-
actions in the subproblems. In this way we can construct
ensembles of satisfiable subproblems with different average
number of interactions. The largest subproblem is the origi-
nal problem and the smallest one is a subproblem in which
each clause contains just one variable. The latter satisfiable
subproblems, which we call minimal satisfiable subprob-
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lems, result directly to the solutions of the original problem.
We will show how the number of solutions �in replica sym-
metry breaking approximation� and the complexity �in one-
step replica symmetric approximation� varies for different
subproblems close to the SAT-UNSAT transition.

The paper is organized in this manner: First we define
more precisely the random K-satisfiability problem and its
known features. In Sec. III we briefly introduce belief and
survey propagation algorithms that play an essential role in
the remaining parts of the paper. Section IV has been divided
into two subsections that deal with satisfiable subproblems.
We start by some general arguments and then represent nu-
merical results for different satisfiable subproblems. Finally
Sec. V is devoted to our conclusion remarks.

II. RANDOM K-SATISFIABILITY PROBLEM

A random satisfiability problem is defined as follows:
We take N logical variables xi� �0,1�. Then we construct
a formula F of M clauses joined to each other by logical
AND. Each clause contains a number of randomly selected
logical variables. In the random K-SAT problem each clause
has a fixed number of K variables. These variables,
which join to each other by logical OR, are negated with
probability 1 /2, otherwise appear as such. For example
Fª �x̄2∨x4�∧ �x̄3∨x2�∧ �x1∨x3� is a 2-SAT formula with
three clauses and four logical variables. A solution of F is a
configuration of logical variables that satisfy all the clauses.
The problem is satisfiable if there is at least one solution or
satisfying configuration of the variables. Given an instance
of the problem, then we are interested to know if it is satis-
fiable or not. A more difficult problem is to find the ground-
state configurations which lead to the minimum number of
violated clauses.

The relevant parameter that determines the satisfiability of
F is �ª =M /N. In the thermodynamic limit �N ,M→� and
�→const.� F is satisfied with probability one as long as
���c. Moreover, it has been found that for �d����c the
problem is in the Hard-SAT phase �9�. At �d we have a
dynamical phase transition associated with the break down
of replica symmetry. Assuming one-step replica symmetry
breaking, one obtains �d�3.92 and �c�4.26 for random
3-SAT problems �9�. Although this approximation seems to
be exact near the SAT-UNSAT transition, it fails close to the
dynamical transition where higher order replica symmetry
breaking solutions are to be used �12,13�.

A useful tool to study CSP’s is the factor graph which is a
bipartite graph of variable nodes and function nodes
�clauses�. The structure of this graph is completely deter-
mined by a M �N matrix with elements Ja,i� �0, +1,−1�;
Ja,i= +1 if clause a contains xi, it is equal to −1 if x̄i appears
in a and otherwise Ja,i=0. In a graph representation, we add
an edge between function node a and variable node i if Ja,i
�0. The edges will be shown by a filled line if Ja,i= +1 and
by a dashed line if Ja,i=−1.

We also define an energy �or cost function� for the prob-
lem which is the number of violated clauses for a given
configuration of variables

E��s�� � 	
a=1

M



j=1

K �1 − Ja,ij
asij

a

2
� . �1�

Here we introduced spin variables si=2xi−1� �−1,1� and ij
a

is the index of jth variable in clause a. A solution of the
problem is a configuration of zero energy and the ground
states are those configuration having the minimum energy.
Note that the presence of two variables in the same clause
results to direct interactions between the corresponding spin
variables.

III. BELIEF AND SURVEY PROPAGATION ALGORITHMS

In this section we give a brief description of some mas-
sage passing algorithms which help us to obtain some in-
sights about the solution space of the problem. These algo-
rithms have an iterative nature and can give information for
single instances of the problem. For more details about the
algorithms and their origin see �7,9,10�.

A. Assuming replica symmetry; belief propagation

In the following we restrict ourselves in the SAT phase
where there are some solutions that satisfy the problem.
These solutions are represented by points in the
N-dimensional configuration space of the variables. If the
number of interactions is low enough we can assume a rep-
lica symmetric structure for the organization of the solutions
in this space. It means that all the solutions lie in a single
cluster �or pure state� in which any two solutions can be
connected to each other by a path of finite steps �in the ther-
modynamic limit�. Belief propagation algorithm enables us
to find the solutions and their number �the cluster’s size or
entropy of the pure state� in this case.

Consider the set of solutions with Ns members.
Each member is defined by N values for the variables
�si

*� �−1,1�  i=1, . . . ,N�. We consider the probability space
made by all the solutions with equal probability. Then we
define the warnings �a→i as the probability that all variables
in clause a, except the xi, are in a state that violates a. As-
suming a treelike structure for the factor graph �i.e., ignoring
the correlations between neighboring variables�, �a→i can be
written as

�a→i = 

j�V�a�−i

Pa
u�j� , �2�

where Pa
u�j� is the probability that variable j dose not satisfy

clause a. We also denote by V�a�, the set of variables that
belong to clause a and by V�i�, the set of clauses that vari-
able i contributes in. In belief propagation algorithm Pa

u�j� is
given by �10�

Pa
u�j� =

� j→a
u

� j→a
s + � j→a

u , �3�

where
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� j→a
u = 


b�Va
s �j�

�1 − �b→j� ,

� j→a
s = 


b�Va
u�j�

�1 − �b→j� . �4�

Here Va
s�j� denotes to the set of clauses in V�j�−a that vari-

able j appears in them as it appears in clause a, see Fig. 1.
The remaining set of clauses are denoted by Va

u�j�.
Starting from initial random values for �’s, one can up-

date them iteratively according to Eqs. �2�–�4�. If the factor
graph is spars enough and the problem is satisfiable then the
iteration may converge with no contradictory warnings. Uti-
lizing these warnings one can use the following relations to
find the entropy of the pure state �10�

S = ln Ns = 	
a=1

M

Sa − 	
i=1

N

�ki − 1�Si, �5�

where

Sa = ln� 

j�V�a�

�� j→a
s + � j→a

u � − 

j�V�a�

� j→a
u � ,

Si = ln��i
− + �i

+� , �6�

and

�i
− = 


a�V+�i�
�1 − �a→i� ,

�i
+ = 


a�V−�i�
�1 − �a→i� . �7�

In these equations V±�i� are the set of function nodes in V�i�
with Ja,i= ±1 and ki is the number of clauses in V�i�.

It has been shown that the above algorithm gives exact
results for treelike factor graphs �10�.

B. Assuming one-step replica symmetry breaking:
Survey propagation

When we have one-step replica symmetry breaking, the
solutions organize in a number of well separated clusters
with their own internal entropies. Suppose there are Nc of
such clusters. In a coarse grained picture, we can assign a
state ��i

*� �−1,0 ,1�  i=1, . . . ,N� to each cluster of the solu-
tion space. For a given cluster we set �i

*= +1/−1 if xi has the
same value +1/−1 in all the solutions belonging to the clus-
ter. Otherwise, that is if xi is not frozen and alternates be-
tween −1 and 1, �i

*=0. Again we can define a probability
space in which all the clusters have the same probability. As
before, �a→i is the probability �in new space� that all vari-
ables in clause a, except xi, are in states that violate clause a.
Notice that we have to take into account the extra state �i

*

=0, which is called the joker state, in the calculations. Gen-
eralizing the belief propagation relations one obtains �10�

�a→i = 

j�V�a�−i

Pa
u�j� , �8�

where

Pa
u�j� =

� j→a
u

� j→a
s + � j→a

0 + � j→a
u . �9�

But now

� j→a
0 = 


b�V�j�−a

�1 − �b→j� ,

� j→a
u = �1 − 


b�Va
u�j�

�1 − �b→j�� 

b�Va

s �j�

�1 − �b→j� ,

� j→a
s = �1 − 


b�Va
s �j�

�1 − �b→j�� 

b�Va

u�j�

�1 − �b→j� . �10�

The above equations can be solved iteratively for �’s. As
long as we are in the SAT phase, the above algorithm may
converge with no contradictory warnings. Then the configu-
rational entropy or complexity of the problem reads �10�

	 = ln Nc = 	
a=1

M

	a − 	
i=1

N

�ki − 1�	i, �11�

where

	a = ln� 

j�V�a�

�� j→a
s + � j→a

0 + � j→a
u � − 


j�V�a�
� j→a

u � ,

	i = ln��i
− + �i

0 + �i
+� , �12�

and

�i
− = �1 − 


a�V−�i�
�1 − �a→i�� 


a�V+�i�
�1 − �a→i� ,

�i
+ = �1 − 


a�V+�i�
�1 − �a→i�� 


a�V−�i�
�1 − �a→i� ,

�i
0 = 


a�V�i�
�1 − �a→i� . �13�

FIG. 1. Factor graph representation of the problem. Squares and
circles denote function and variable nodes, respectively.
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To find a solution of the problem one can follow a simple
survey inspired decimation algorithm that works with the
biases a variable experiences �10�. Let us define Wi

+ as the
probability that in a randomly selected cluster of solutions,
variable i be frozen in state +1. Similarly we define Wi

− and
Wi

0. Then, according to the above definitions we have

Wi
+ =

�i
+

�i
+ + �i

0 + �i
− ,

Wi
− =

�i
−

�i
+ + �i

0 + �i
− ,

Wi
0 = 1 − Wi

+ − Wi
−. �14�

After a single run of the survey propagation algorithm we
would have the above probabilities. So, we could fix the state
of the most biased variable �one that has the largest
W+−W−� to the favored value. In this way, the variable
might satisfy some clauses that would be removed from the
problem. Moreover, removing the assigned variable would
result in some clauses with just a single variable. These
degree-one clauses could easily be satisfied by assigning the
appropriate value to the associated variables. One could
again remove the satisfied clauses and fixed variables until
no degree-one clause remains in the problem. Then we run
the survey propagation algorithm on the simplified problem
and repeat the above procedure. This process continues until
we reach a simple problem with all warnings equal to zero.
This problem can then be solved by a local search in the
configuration space of the remained variables. The result
would be a configuration of the variables that satisfies all the
clauses.

IV. FINDING SATISFIABLE SUBPROBLEMS

Consider a satisfiable random K-SAT problem and the
associated factor graph with N variable nodes, M function
nodes, and KM edges. All the function nodes have the same
degree ka=K and a variable node has degree ki which, in the
thermodynamic limit, follows a Poisson distribution of mean
K�. If �si

*  i=1, . . . ,N� is a solution of the problem, then any
function node in the factor graph has at least one neighboring
variable node that satisfies it. It means that for any solution
we could remove some of the edges in the factor graph while
the obtained subproblem is still satisfiable and ka
1 for all
the function nodes. Obviously we could do this process until
each function node had only one variable node, the one that
should satisfy the corresponding clause. So, it is clear that
for a satisfiable problem there exist many subproblems rang-
ing from the original one, with L=KM edges �or interac-
tions�, to a minimal one with L=M edges in its factor graph.
In general we define Gx�M ,N� as the ensemble of satisfiable
subproblems defined by the parameter x. For example
GL�M ,N� is the ensemble of satisfiable subproblems with L
edges.

An interesting point is the presence of a correspondence
between the solutions of the original problem and the solu-

tions of an ensemble of subproblems with L edges. Obvi-
ously any solution of the subproblems in GL�M ,N� is also a
solution of the original problem. Moreover, as described
above, for any solution we can remove some of the edges
until we obtain a subproblem of exactly L edges. In �11� we
showed that this correspondence holds also for the set of
spanning trees which is a subset of GM+N−1�M ,N�. These
correspondence relations will allow us to construct the en-
sembles and to find the solutions of the original problem by
solving a subproblem.

Notice that as the number of interactions in a problem
decreases we have to pay less computational cost to solve it.
In fact, treelike factor graphs can easily be solved by effi-
cient local search algorithms. And if someone could give the
ensemble of minimal subproblems, the whole set of solutions
would be available. Now the main questions are the follow-
ing: How can we construct these satisfiable subproblems and
what can be said about the properties of these subproblems?
We try to answer these questions by a simple modification of
survey propagation algorithm, introduced in �11�.

A. General arguments

For a given ensemble of subproblems Gx�M ,N� we would
have Nx�M ,N� members. Consider the ensemble Gx and the
edge �a , i� in the factor graph. We define the weight wa,i as a
measure of the edge’s appearance frequency in the ensemble,
that is,

wa,i =
1

Nx
	

g�Gx

ya,i�g� , �15�

where ya,i�g�=1 if the edge appears in g and otherwise
ya,i�g�=0. Let Px�g� be a measure defined on the space of all
subgraphs with equal probability for all subgraphs g that
belong to Gx and zero otherwise. This probability can be
written in terms of y’s

Px�g� =
1

Nx
	

g��Gx



�a,i�

�ya,i�g�,ya,i�g��. �16�

It is then easy to show that 	gPL�g�=1 and ln Nx

=−	gPx�g�ln Px�g�.
Suppose that we have obtained w’s for the ensemble Gx

from another way. As an estimate of Px�g� we write

Px
e�g� = 


�a,i�
�ya,i�g�wa,i + �1 − ya,i�g���1 − wa,i�� . �17�

Then we expect that

ln Nx
e = − 	

g

Px
e�g�ln Px

e�g�

= − 	
�a,i�

�wa,i ln wa,i + �1 − wa,i�ln�1 − wa,i�� �18�

gives a good estimate of ln Nx.
Suppose that we have obtained all the members in en-

semble Gx. Assuming replica symmetry, we could run belief
propagation on each member of the ensemble and obtain its
entropy. Then we could define �Sx�, the average of entropy
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taken over ensemble Gx. Similarly we could run survey
propagation algorithm and define �	x� as the average com-
plexity of the subproblems in Gx. Actually we will not follow
the above procedure and get around the difficult problem of
finding all the ensemble members. Let us describe our pro-
cedure for the case of survey propagation algorithm. Gener-
alization to the belief propagation algorithm would be
straightforward.

To obtain w’s in a given ensemble we make use of a
self-consistent approach. We run survey propagation algo-
rithm on the original factor graph but at the same time we
take into account the fact that each edge has its own prob-
ability of appearing in the ensemble. Now the survey along
edge �a , i� is updated according to the following rule:

�a→i = 

j�V�a�−i

�wa,jPa
u�j� + 1 − wa,j� , �19�

where as before Pa
u�j� is given by Eq. �9� with

� j→a
0 = 


b�V�j�−a

�1 − wb,j�b→j� ,

� j→a
u = �1 − 


b�Va
u�j�

�1 − wb,j�b→j�� 

b�Va

s �j�

�1 − wb,j�b→j� ,

� j→a
s = �1 − 


b�Va
s �j�

�1 − wb,j�b→j�� 

b�Va

u�j�

�1 − wb,j�b→j� .

�20�

An essential step here is the determination of w’s in the given
ensemble. Remember that an ensemble is a set of satisfiable
subproblems which completely define the weights w’s along
the edges of the factor graph. Thus, if with a given set of w’s
we find a large warning sent from a to i, we expect a high
probability for the presence of that edge in the ensemble.
Here we make a crucial assumption and use the ansatz

wa,i = ��a→i�� �21�

that incorporates the above fact. We take �
0 as a free
parameter and denote the resulted ensemble by G�. For a
given � we would have an ensemble of satisfiable subprob-
lems with different number of edges. Because of the func-
tional form of the above ansatz, the average number of edges
in the ensemble decreases by increasing �. Therefore, to
obtain smaller satisfiable subproblems we will need to run
the algorithm for larger values of �.

Starting from initially random �’s and w’s we iterate the
above equations until �i� the algorithm converges to some
fixed point, �ii� or results to contradictory warnings, �iii� or
dose not converge in a predefined limit for the number of
iterations tmax. We think that as long as the original problem
is satisfiable, the algorithm will converge in a finite fraction
of times that we run it.

If the algorithm converges then we can utilize our defini-
tion for w’s and construct satisfiable subproblems. To con-
struct a subproblem in G� we go through all the edges and
select them with probabilities wa,i’s. We hope that such a
subproblem be satisfiable with a considerable probability.
Moreover, it is reasonable that we pay more computational

cost to find smaller satisfiable subproblems which are closer
to the solutions of the original problem.

B. Numerical results

In the following we will study some properties of satisfi-
able subproblems including the spanning trees of the original
factor graph and the minimal subproblems.

We start with random initial values of 0�a,i, wa,i1 for
all the edges �a , i�. Then, in each iteration of the algorithm
we update � and w for all the edges according to Eqs.
�19�–�21�. The edges are selected sequentially in a random
way. The algorithm converges if for all edges the differences
between new and old values of � are less than �. We bound
the number of iterations from above to tmax and if the algo-
rithm dose not converge within this number of iterations, we
say it diverges. In the following we will work with �
=0.001 and tmax=1000. Moreover, we consider 3-SAT prob-
lems where each clause in the original problem has just K
=3 variables.

Let us first study the convergence of the modified algo-
rithm. To this end we repeat the algorithm for a number of
times and define Pconv as the fraction of times in which the
algorithm converges. In Fig. 2 we display Pconv for the modi-
fied survey propagation algorithm. It is observed that Pconv

FIG. 2. Convergence probability for two values of � close to the
SAT-UNSAT transition. Number of variables is N=1000 and statis-
tical errors are of order 0.01.

FIG. 3. Convergence probability for different problem sizes at
�=4.2. Statistical errors are of order 0.01.
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decreases by increasing �. Moreover, Pconv diminishes more
rapidly for larger �. It is reasonable because removal of the
edges becomes harder as we get closer to the SAT-UNSAT
transition. What happens if we increase the problem size?
Figure 3 shows the finite size effects on convergence prob-
ability. These effects are significant due to the small problem
sizes studied here. Moreover, as expected, the probability
decreases more rapidly as N increases.

To see how the number of edges changes with � we ob-
tained the average weight of an edge, �w�, and its standard
deviation, �w, in converged cases. The average number of
edges is given by �L�=3M�w�. Figure 4 shows how these
quantities behave with �. We found that as � becomes larger
�w� decreases and finally �not shown in the figure� ap-
proaches to 1/3, the minimum possible value to have a sat-
isfiable subproblem when K=3.

Using our arguments in previous subsection we can obtain
an estimate of the number of members in the ensemble G�,
N�

e . In Fig. 5 we show how ln N�
e changes with �. Here we

have displayed the results just for small �’s where we are
interested in. For larger �’s, N�

e decreases to its value for
�L�=M.

As described in the previous section we can obtain the
average entropy of a typical subproblem in G� by running
belief propagation on it. The results have been displayed in
Fig. 6. Similarly the average complexity of a subproblem is

obtained by running survey propagation algorithm. Figure 7
shows this quantity for some values of �. As the figures
show both �S�� and �	�� diminish with � and �. Removing
edges from the factor graph and approaching the SAT-
UNSAT transition both decrease the number of solutions and
complexity. Notice that for a fixed value of � we can define
the threshold �c��� where the complexity vanishes. It is a
decreasing function of � and we know already that �c��c�
=0.

1. Satisfiable spanning trees

Suppose that the algorithm converges and returns the
weights w’s for all the edges of the factor graph. It is not
difficult to guess that maximum spanning trees have a larger
probability to be a satisfiable spanning tree. A maximum
spanning tree is a spanning tree of the factor graph with
maximum weight W=	�a,i�wa,i. For a given � and a con-
verged case we can construct maximum spanning trees in the
following way: We start from a randomly selected node in
the original factor graph and find the maximum weight
among the edges that connect it to the rest of the graph. Then
we list the edges having a weight in the � neighborhood of
the maximum one and add randomly one of them to the new
factor graph. If we repeat the addition of edges N+M −1
times we obtain a spanning tree factor graph which has the

FIG. 4. The average weight and its standard deviation for N
=1000. Statistical errors are about the size of the points.

FIG. 5. Estimated value of the number of members in G�. The
results are for N=1000 and statistical errors are of order 0.1.

FIG. 6. Average entropy of a subproblem in G� for N=1000.
Statistical errors are about the size of the points.

FIG. 7. Average complexity of a subproblem in G� for N
=1000. Statistical errors are about the size of the points.
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maximum weight on its edges. Notice that taking a nonzero
interval to define the edges of maximum weight at each step,
along with the randomness in choosing one of them, allows
construction of a large number of maximum spanning trees.

We define Psat as the probability that a maximum span-
ning tree be satisfiable if the algorithm converges. To find out
the satisfiability of the subproblem we use a local search
algorithm �focused metropolis search� introduced in �14�.
Figure 8 displays this quantity vs � for some values of �.
The probability of finding a satisfiable spanning tree is con-
siderable even for a very small � and tends to unity as �
becomes large values. For instance, if �=4.2 then at �
=0.01 almost half the maximum spanning trees are satisfi-
able. For these parameters the fraction of converged cases is
nearly 0.6 �see Fig. 2�. Although the algorithm provides a
simple way of constructing satisfiable spanning trees, in gen-
eral finding them is not an easy task. For example, for a
satisfiable problem with parameters �N=100, M =400, K=3�,
we found no satisfiable spanning tree among 107 randomly
constructed ones.

Figure 9 shows the satisfiability of maximum spanning
trees for some larger problem sizes at �=4.2. Hopefully, by
increasing N the satisfiability probability increases for
smaller values of � and obtains its saturation value more
rapidly. We hope that this behavior of Psat compensate the

decrease in Pconv for larger problem sizes. A look at Figs. 3
and 9 shows that for N=4000, �=4.2 and at �=0.01 we
have Pconv�0.5 and Psat�0.7. It means that of 100 runs we
can extract on average 35 satisfiable spanning trees.

Having a satisfiable spanning tree, we can find its solu-
tions �which are also the solutions of the original problem�
by any local search algorithm. This, besides the other meth-
ods, provides another way of finding the solutions of the
original problem. In Fig. 10 we obtained the entropy of typi-
cal satisfiable spanning trees by running belief propagation
on them. As the figure shows, this entropy decreases linearly
with �.

It will be interesting to compare the structural properties
of satisfiable spanning trees with those of randomly con-
structed ones. To this end we obtained the degree distribution
of variable and function nodes in the corresponding spanning
trees. In Fig. 11 we compare the degree distributions of vari-
ables. For function nodes we found no significant difference
between the two kinds of spanning trees. However, the de-
gree distribution of variable nodes is slightly broader for the
satisfiable spanning trees. There are more low and high de-
gree nodes in these spanning trees.

Another feature of satisfiable spanning trees is their low
diameter compared to the random ones; take the node having
maximum degree as the center of the spanning tree. The

FIG. 8. Satisfiability probability of maximum spanning trees vs
�. The problem size is N=1000 and statistical errors are of order
0.01.

FIG. 9. Satisfiability probability of maximum spanning trees for
a few problem sizes. Statistical errors are of order 0.01.

FIG. 10. Entropy of typical satisfiable spanning trees for N
=1000 and �=0.04.

FIG. 11. Degree distribution of variable nodes in satisfiable and
random spanning trees. The parameters are N=1000, �=4.2, and
�=0.025. Statistical errors are about the size of the points.
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distance of a node from the center is defined as the number
of links in the shortest path connecting the center to the
node. We define the largest distance from the center as the
network’s diameter. The diameters of the two kinds of span-
ning trees have been compared in Fig. 12. Satisfiable span-
ning trees have a diameter which is almost half the diameter
of the random spanning trees.

2. Minimal satisfiable subproblems

A minimal subproblem has the minimum possible number
of edges L=M where each function node is connected to at
most one variable node. Having such a subproblem it is easy
to check its satisfiability. The solutions of a minimal satisfi-
able subproblem will also be the solutions of the original
problem. Moreover, for any solution of the original problem
there is at least one minimal satisfiable subproblem. The total
number of minimal subproblems is KM that makes the ex-
haustive search for satisfiable ones an intractable task.

Suppose that the algorithm for a given � has been con-
verged and returned the weights w’s for all the edges. Among
the edges emanating from function node a we choose the one
with maximum weight. If there are more than one edge of
maximum weight then we select one of them randomly. No-
tice that we treat all the edges in the � neighborhood of the

maximum weight in the same manner. For all the function
nodes we make the above choice to construct a minimal sub-
problem. Then we check the satisfiability of the subproblem
and repeat the process for a large number of minimal sub-
problems obtained from the converged runs of the algorithm.
Again Psat is defined as the probability of finding a minimal
satisfiable subproblem. This quantity has been displayed in
Fig. 13. We observe that even for very small �, Psat is close
to 1. When the parameters are N=1000, M =4200, K=3, this
happens at ��0.05. According to Fig. 2, at these parameters
we have to run the algorithm on average 15 times to find a
converged case. In Fig. 14 we compare Psat for two different
problem sizes. As the figure shows there is no significant
difference between the two results.

Having a minimal satisfiable subproblem we will be able
to find the solutions directly. Any variable node that has at
least one emanating edge is frozen in the obtained set of
solutions. In Fig. 15 we have showed the fraction of free
variables vs �. Notice that 1−� is the fraction of frozen
variables and 2N� gives the number of solutions in a typical
satisfiable subproblem. As expected, the number of free vari-
ables decreases as we move closer to the SAT-UNSAT tran-
sition. Finally we look at the degree distribution of the vari-
able nodes in the minimal satisfiable subproblems. In Fig. 16
we compare the degree distribution with that of random

FIG. 13. Satisfiability probability of a minimal subproblem vs
�. Number of variables is N=1000 and statistical errors are of order
0.01.

FIG. 12. Average diameter of satisfiable and random spanning
trees for N=1000 and �=0.05.

FIG. 14. Satisfiability probability of minimal subproblems at
�=4.2. Statistical errors are of order 0.01.

FIG. 15. Fraction of the free variables in the minimal satisfiable
subproblems. Number of variables is N=1000 and statistical errors
are of order 0.001.
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minimal subproblems where the emanating edges from the
function nodes are distributed randomly between the vari-
ables. We observe that the real distribution is broader than
the random one. Low and high degree nodes have more con-
tribution in the minimal satisfiable subproblems. We encoun-
tered the same phenomenon in Fig. 11 that compares the
degree distribution of satisfiable spanning trees with that of
random ones.

V. CONCLUSION

In summary we showed that there is a way to reduce a
random K-satisfiability problem to some simpler subprob-
lems whose solutions are also the solutions of the original
problem. To achieve this we modified the known message
passing algorithms by assigning some weights to the edges
of the factor graph. These weights, that are determined by a
self-consistent procedure, lead us to an estimate of the num-
ber of satisfiable subproblems. This quantity is interesting to
study because we think that it gives a measure of the hard-
ness of the original problem. Indeed, we expect a harder
problem to have a smaller number of equivalent subproblems
that are easier to solve and at the same time provide the
original problem’s solutions. The introduced weights also
helped us to construct satisfiable subproblems. Finding satis-

fiable subproblems allowed us to compute the expected value
of their entropy and complexity. Studying the behavior of
these quantities in the �� ,�� space could in turn reflect the
richness of the solution space. We defined �c��� as the larg-
est value of � which results in a positive complexity for the
associated subproblems. The behavior of �c with � near the
SAT-UNSAT transition provides another signature of the
transition.

As a special case we also constructed the satisfiable span-
ning trees. Satisfiable spanning trees are interesting because
they are the closest treelike structures to the original prob-
lem. It is where the belief propagation algorithm turns out to
be exact. To search for the relation between the satisfiability
and the structure we compared the structural properties of
satisfiable spanning trees with those of random spanning
trees. We found significant differences in the diameter and
the degree distribution of the variables between the two
kinds of spanning trees.

As another special case we constructed the minimal satis-
fiable subproblems and studied some interesting features of
their factor graph. Again we focused on the structural prop-
erties of minimal satisfiable subproblems. Constructing these
subproblems one could easily obtain their solutions which
satisfy the original problem too. It would be interesting to
compare the efficiency of this method in finding the solutions
with those of known algorithms. We also found the fraction
of free variables in the minimal satisfiable subproblems. This
quantity gives the entropy of minimal satisfiable subprob-
lems and so the number of solutions we could extract from
such subproblems.

The modified algorithm studied in this paper can be used,
besides the present algorithms, to find the solutions of a con-
strained satisfaction problem in the SAT phase. Moreover, it
provides a way to find the satisfiable subproblems which is
not an easy task. Comparing satisfiable subproblems with
equivalent random ones might provide some insights about
the nature of satisfiable problems and their solutions. It is
interesting to find out the relationship between the satisfiabil-
ity and the structure of a factor graph.

Due to the computational limitations, the results have
been restricted to small problem sizes of order 103. In this
paper we tried to show how increasing the problem size in-
fluences the results.
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